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L E A D  A R T I C L E

Dynamic endemism and ‘general’ biogeographic patterns

BY SILVIO SHIGUEO NIHEI

This paper deals with some theoretical aspects of ar-
eas of endemism. I do not intended to make a contri-
bution toward an innovative methodology but, in fact,
my major concern is toward understanding and ap-
proaching areas of endemism under a dynamic view,
which I am terming ‘dynamic endemism’. Following
my initial argumentation on dynamic view of areas of
endemism, I will thereafter exemplify my discussion
with two case studies (Amazonia and the Mexican Tran-
sition Zone).

Areas of distribution and areas of endemism are
understood as basic elements in biogeography. Area
of distribution can be defined as the whole spatial
range occupied by a taxon at a given time (Roig-Juñent
et al. 2002) or a region occupied by a monophyletic
taxon (Humphries and Parenti 1999). Basic informa-
tion in biogeography are the localities of occurrence
known for a given taxa, and gathering of localities is
the starting point for the inference of areas of distri-
bution. As it is virtually impossible to have all the lo-
calities of occurrence known and recorded for any
taxon, some manual methods have been applied by
authors to estimate area of distribution by extrapola-
tion (see Roig-Juñent et al. 2002 for a review). On the
other hand, definition of areas of endemism is consid-
erably more complex. Many authors have approached
the subject with both theoretical and operational dis-
cussions (Nelson and Platnick 1981, Cracraft 1985,
Harold and Mooi 1994, Morrone 1994, Linder 2001,
Roig-Juñent et al. 2002, Hausdorf 2002, Szumik and
Goloboff 2004). Nevertheless, some common points
can be traced among the several authors and, despite
differences and controversies, in a general way, areas
of endemism can be defined in terms of spatial coinci-
dence among areas of distribution of different taxa.
For a comprehensive definition we can refer to that of
Harold and Mooi (1994), by which areas of endemism
should be recognized after phylogenetic and distribu-
tional congruence: “…area of endemism as a geo-
graphic region comprising the distributions of two or
more monophyletic taxa that exhibit a phylogenetic
and distributional congruence and having their respec-
tive relatives occurring in other such-defined regions”
(Harold and Mooi, 1994 p. 262).

Coincidence on biotic history (phylogeny) and on
their distribution in space should thus be regarded as
the main components assumed as relevant and essen-
tial to recognize areas of endemism. The complexity
on dealing with areas of endemism is that identifica-
tion (delimitation) of areas of endemism and the area
relationships reconstruction are two inextricable steps.
Morrone (2001b) defined this as being a two-stage
analysis comprised first by the recognition of areas of
endemism (primary biogeographic homology) and
then a cladistic test of the previously recognized areas
(secondary biogeographic homology). That is a rational
procedure intended to integrate panbiogeography (to
identify primary spatial homologies) and cladistic
biogeographic methods (to evaluate and legitimate
the previously identified homologies). Since areas of
endemism are hierarchically linked (nestedness) and
scale-dependent (Cracraft 1985), when defining area
relationships one is also delimiting the areas of ende-
mism in a given scale. Therefore, an area may be a set
of localities on southeastern Brazil at one end to the
Neotropical region at the other end, or even Gondwana
and Pangaea, if going back to past areas. This recipro-
cal dependence raises another problem towards a re-
liable delimitation of areas of endemism, because the
cladistic test (sensu Morrone 2001b) results in rela-
tionships among areas of endemism and therefore
secondary biogeographic homologies are recognized
and evaluated in a given hierarchical level (above-ter-
minals) but without considering the monophyly of
those terminals.

An area of endemism is a biological concept of
space that contemplates processes and pattern. Proc-
esses related to the recognisability of areas of ende-
mism are of two basic kinds, geological spatio-tem-
poral processes (plate tectonics, climate change, sea
water level change, etc.) and biological spatio-tempo-
ral processes (vicariance and extinction). Exemplifica-
tion of this argument follows as ‘Stage 1’ (the proc-
esses): areas of endemism should exist due to intrinsic
response of an ancestral taxon affected by the pres-
ence of a geological/ abiotic barrier splitting its origi-
nal distribution, and the response (vicariance) being
the isolation of that ancestral and subsequent differ-
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entiation into two derived sister-taxa. And ‘Stage 2’
(the pattern): when there is coincidence of several dif-
ferent taxa presenting the same vicariant response to
that exactly same geological/ abiotic barrier, so there
is a biogeographic pattern recognizing areas of ende-
mism and their relationship. Similar responses from
different taxa to the same geological events generate
a congruent pattern of area relationships (spatial and
temporal congruence, sensu Donoghue and Moore
2003). In a higher-level perspective, we might observe
nestedness of restricted areas of endemism (districts
and provinces) into large-scale areas of endemism
(subregions, regions and realms) as Amazonia, the
Atlantic Forest and the Neotropical region. Morrone
(2001b) pointed out this as a “natural hierarchy of the
biogeographical system”.

Within a given time range (Δt between –10 and –7,
assuming t=0 as the present time), a given area will
involve a series of geological/ abiotic events. Similar
responses from different taxa at this Δt will generate a
general biogeographic pattern X. In another time range
(Δt between –6 and –3), the same area will involve
another series of geological events, and again, similar
responses from different taxa at this Δt will generate
another general biogeographic pattern Y. Patterns X
and Y might be similar or not in terms of area rela-
tionships. Even in case of similarity, they are not con-
gruent, as they were resulting from different series of
geological events, thus temporally incongruent. As-
suming that in the pattern X the areas A-B-C-D-E have
resulted with the relationship (A(B(C(D,E)))), and in
pattern Y related as (A((C,E)(B,D))). Based on this, one
may conclude that DE is an area of endemism (mono-
phyletic) in X, but not in Y. This illustrates how areas
of endemism have their ‘existence’ affected along time
scale and the floating dynamics of endemism across
temporal dimension. This hypothetical explanation and
my initial argumentation on dynamic endemism could
be exemplified by some study-cases but herein I will
discuss two important and relatively well-studied ar-
eas: Amazonia and the Mexican Transition Zone.

Amazonia is a spatial unit traditionally regarded as
a historical unit (Fig. 1A), which means that biotic el-
ements from all the small inclusive units of Amazonia
share a common history. Several studies have sup-
ported Amazonia as a biogeographical unit: on Redu-
viidae bugs (Morrone and Coscarón 1998), primates
(Da Silva and Oren 1996), passerines (Bates et al. 1998),
several plant and animal taxa (Morrone 2000, 2001a),
and many others. On the other hand, there are also
several studies with favourable evidence on the hy-
pothesis that Amazonia is a composite area (Fig. 1B):
on primates and Nematoceran flies (Amorim and Pires
1996, Roig-Juñent and Coscarón 2001), Brachyceran
flies (De Carvalho 1999, De Carvalho et al. 2003, Nihei
and De Carvalho, 2007), Meliponini bees (Camargo

1996, Camargo and Moure 1996, Camargo and Pedro
2003), Pentatomiidae bugs (Grazia 1997), Cercopidae
homopterans (Goldani and Carvalho 2003),
Curculionidae beetles (Morrone 2002), Riodinidae but-
terflies (Hall and Harvey 2002), Trichodactylidae
decapods (Morrone 2003), Felidae mammals (Eizirik
et al. 1998), Aves (Cracraft and Prum 1988, Prum 1988,
Marks et al. 2002), Cecropia plants (Franco and Berg
1997), several plant families (Cortés and Franco 1997),
and several plant and animal taxa (Morrone 2000).

Not all of these individual patterns can be gath-
ered within the same general pattern, however, be-
cause these patterns are not temporally congruent
(Nihei and De Carvalho 2007). Ages provided by au-
thors were Cretaceous (Amorim and Pires 1996, Grazia
1997, De Carvalho 1999), Quaternary (Manfrin et al.
2001), Cenozoic (Cracraft and Prum 1988), and Plio-
Pleistocene (Eizirik et al. 1998). Furthermore, the Plat-
yrrhini monkeys included in the pattern of Amorim
and Pires (1996), besides the Nematoceran dipterous,
have been dated to Oligocene (35 mya) (Schrago and
Russo 2003). The hypothesis of composite Amazon was
first developed by Dalton Amorim and Maria Rita Pires
(Amorim and Pires 1996, Amorim 2001) and the main
geological event responsible for generating that pat-

Fig. 1. Biogeographical classification of the Neotropics
into subregions as suggested by Nihei & De Carvalho
(2007), with area relationships proposed by: A, Morrone
and Coscarón (1998); B, Nihei and De Carvalho (2007).
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tern is the lacustric formation in Amazon basin along
the Amazonas-Madeira-Mamoré rivers caused by ma-
rine water transgression during Late Cretaceous. Nev-
ertheless, several studies have reinforced that marine
water transgression into the South American conti-
nent has taken place several times in the past (Hoorn
1993, Räsänen et al. 1995, Frailey 2002, Nores 2004,
etc.), not only during the Late Cretaceous as pointed
out in the model. And that is why this same pattern
could be observed repeatedly in different groups on
different time periods, leading some authors to equivo-
cally determine a general biogeographic pattern, when
in fact they are dealing with “pieces of different puz-
zles” (Nihei & Carvalho 2007).

Part of the discordance on the status of Amazonia
as a unit or a composite area might be related to this
temporal dynamism on the existence of a vicariance
event dividing the Amazon. Organisms that did not
respond or were not affected by the marine water
transgression forming an epicontinental sea in Ama-
zon do have corroborated a biogeographical pattern
showing Amazon unity, as corroborated by the refer-
ences aforementioned. While the organisms affected
by this epicontinental sea, whenever it have occurred,
have corroborated a pattern with Amazon as a com-
posite area.

My second example is the Mexican Transition Zone
(Fig. 2). This transitional area interfaces Neotropical and
Nearctic regions and was firstly recognized and dis-
cussed by Gonzalo Halffter (1962, 1976, 1978, 1987).
Besides, several studies have undertaken biogeographic
analysis of this area (Liebherr 1994, Hernández-Baños
et al. 1995, Luna-Vega et al. 1999, Marshall and Liebherr
2000, Morrone and Márquez 2001, Escalante et al. 2007,
and several others; see Morrone 2005 for a review).
Despite differences on the delimitation of areas of en-
demism and discordances on the areas relationships,
we can synthesize a common finding recognized by the
different authors. A number of the proposed area rela-
tionships converge so that Mexico is divided along the
Transmexican Volcanic Belt into one northern and other
southern portions (e.g., Liebherr 1994, Marshall and
Liebherr 2000, Morrone and Márquez 2001) (Fig. 2A).
A recent study (Escalante et al. 2007), however, has re-
vealed an opposite hypothesis with a division into east-
ern and western portions partially delimited, at the
present time, by the mountain range of Sierra Madre
Oriental (Fig. 2B). Escalante et al. (2007) distinguish both
divisions by the age and nature of the major geological
event responsible for generating each pattern: the north-
south division due to North and South American plates
convergence on Miocene period, whereas the east-west
division associated to the Caribbean plate eastward
migration in the Paleocene.

The Mexican Transition Zone is widely and unques-
tionably recognized as a complex area with compos-

ite biotic nature, with not only Nearctic, Mesoamerican
and South American affinities of its inhabiting biota,
but also particular endemism. With regards to the at-
tributes and differences between each area, some par-
allels can be made by extending the discussion on the
dynamism of Amazonian biogeography to the Mexi-
can Transition Zone. In this second case, we also ob-
serve dynamic patterns of endemism, with dual area
cladograms recognizing relationships differing accord-
ing to the temporal dimension (Paleocene or Miocene).
Escalante et al. (2007) have assumed that former stud-
ies have not detected these two opposite patterns on
the area, perhaps some of them comparing (and even
constraining) the distributional patterns obtained onto
the existing hypothesis of north-south division. The
authors correctly warn that “previous biotic diversifi-
cation studies of the Nearctic and Neotropical regions
need to be revised”.

By assuming this view, one should define and de-
limit spatial homologies (areas of endemism) also in-
corporating temporality. For this reason, methods avail-
able to identify primary spatial homologies (e.g.,
panbiogeography, PAE, NDM) are not questioned
herein, except that their users must be aware of the

Fig. 2. Biogeographical classification of Mexico into
provinces based on Morrone (2001a, 2004) (modified
from Morrone 2005), with indication of: A, North-
South division (Morrone and Márquez 2003); B, East-
West division (Escalante et al. 2007).
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temporal dynamics of areas of endemism. Addition-
ally, general biogeographic patterns for any area should
incorporate temporal dimension and be interpreted
as age-based patterns and not only form and space-
based patterns. Area-relationships might differ along
the time and obviously patterns also should be differ-
ent and interpreted as differing for any time interval.
Under this perspective, we should understand
biogeographic general patterns as general hypothesis
associated to a given time interval and not as an
atemporal general hypothesis.
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